Lesson 8.2 - Basic Gas Laws - Boyle's, Charles', Gay-Lussac's, and Combined Gas Law

Solve all problems - you must show your work (including units). The correct answer is given in parentheses at the end of the problem.

Boyle's Law

1. A gas sample contained in a cylinder equipped with a moveable piston occupied 300.0 mL at a pressure of 2.00 atm . What would be the final pressure if the volume were increased to 500.0 mL at constant temperature? (1.20atm)
2. A balloon that contains 1.50 L of air at 1.00 atm is taken underwater to a depth at which the pressure is 3.00 atm. Calculate the new volume of the balloon. Assume that the temperature remains constant. (0.500L)
3. A 50.0 L sample of gas collected in the upper atmosphere at a pressure of 18.3 torr is compressed into a 150.0 mL container at the same temperature. A. What is the new pressure, in atm? B. To what volume would the original sample have had to be compressed to exert a pressure of 10.0 atm ? (A. 8.03atm; B. 0.120 L)
4. A sample of krypton gas occupies 75.0 mL at 0.400 atm . If the temperature remained constant, what volume would the krypton occupy at A. 4.00 atm ;
B. 0.0400 atm ;
C. 765 torr
D. 4.00 torr;
E. 3.50×10^{-2} torr? (A. 7.50 mL, B. $750 \mathrm{~mL}, \mathrm{C} .29 .7 \mathrm{~mL}, \mathrm{D} .5 .70 \mathrm{~L}, \mathrm{E} .651 \mathrm{~L}$)

Charles' Law

1. Several balloons are inflated with helium to a volume of 0.75 L at $27^{\circ} \mathrm{C}$. One of the balloons was found several hours later, the temperature had dropped to $22^{\circ} \mathrm{C}$. What would be the volume of the balloon when found, if no helium has escaped? (0.74L)
2. A weather balloon is filled to the volume of 150.0 L on a day when the temperature is $10.0^{\circ} \mathrm{C}$. If no gases escaped, what would be the volume of the weather balloon after it rises to an altitude where the temperature is $-8.00^{\circ} \mathrm{C}$? (140.L)
3. A fixed quantity of gas at $23.0^{\circ} \mathrm{C}$ exhibits a pressure of 748 torr and occupies a volume of 10.3 L . Calculate the volume the gas will occupy if the temperature is increased to $145^{\circ} \mathrm{C}$ while the pressure is held constant. (14.5L)
4. A sample of gas occupies a volume of 7.50 L at 0.988 atm and $28.0^{\circ} \mathrm{C}$. At what temperature, in degrees Celsius, is the volume of the gas 4.00 L if the pressure is kept constant. $\left(-112^{\circ} \mathrm{C}\right)$
5. A gas occupies a volume of 100.0 mL at $27.0^{\circ} \mathrm{C}$ and 630.0 torr. At what temperature, in degrees Celsius, would a volume of 50.0 mL be at 630.0 torr? $\left(-123^{\circ} \mathrm{C}\right)$

Gay-Lussac's Law

1. A sample of gas occupies 10.0 L at 100.0 torr and $27.0^{\circ} \mathrm{C}$. Calculate the pressure if the temperature is changed to $127^{\circ} \mathrm{C}$ while the volume remains constant. (133 torr)
2. The temperature of 200.0 mL of a gas originally at STP is changed to $-25^{\circ} \mathrm{C}$ at constant volume. Calculate the pressure of the gas in atm. (0.91atm)
3. A gas occupies a volume of 50.0 mL at $27^{\circ} \mathrm{C}$ and 630 mmHg . At what temperature, in ${ }^{\circ} \mathrm{C}$, would the pressure be 101.3 kPa if the volume remains constant? $\left(89^{\circ} \mathrm{C}\right)$
4. A sample of gas occupies a volume of 5.00 L at $700 . \mathrm{mmHg}$ and $30.0^{\circ} \mathrm{C}$. At what temperature, in ${ }^{\circ} \mathrm{C}$, would the pressure be 600 . torr if the volume remains constant? $\left(-13.3^{\circ} \mathrm{C}\right)$
5. A sample of gas occupies 400.0 mL at STP. Under what pressure would this sample occupy 200.0 mL if the temperature were increased to $819^{\circ} \mathrm{C}$? (8.00atm)

Combined Gas Law

1. A 280.0 mL sample of neon exerts a pressure of 660.0 torr at $26.0^{\circ} \mathrm{C}$. At what temperature, ${ }^{\circ} \mathrm{C}$, would it exert a pressure of 940 . torr in a volume of 440.0 mL ? $\left(396^{\circ} \mathrm{C}\right)$
2. A certain gas has a volume of 500.0 mL at $77.0^{\circ} \mathrm{C}$ and 600.0 torr. Calculate the temperature, ${ }^{\circ} \mathrm{C}$, if the volume decreased to 400.0 mL an the pressure is increased to 1.00 atm . $\left(81.9^{\circ} \mathrm{C}\right)$
3. A given sample of gas has a volume of 4.20 L at $60.0^{\circ} \mathrm{C}$ and 1.00 atm pressure. Calculate its pressure if the volume is changed to 5.00 L and the temperature to $27^{\circ} \mathrm{C}$. (0.76atm)
4. A gas has a volume of 240.0 mL at $25.0^{\circ} \mathrm{C}$ and 600.0 mmHg . Calculate its volume at STP. (174 mL)
5. A certain gas occupies a volume of 550.0 mL at STP. What would its volume be at $27.0^{\circ} \mathrm{C}$ and 125.0 kPa ? (490.mL)
