Type of Solid	Form of Unit Particles	Forces Between Particles	Structure & Bonding	Properties	Examples
Covalent- Network Solids	Composed of atoms covalently bonded together into a three-dimensional network or layers of two-dimensional networks.	Covalent Bonds	Atoms connected in an extended network of covalent bonds.	 Very hard. Brittle. Dull surface. Very high melting point. Low Density. Poor to variable thermal and electrical conduction. Semiconductors or insulators. 	Carbon, metalloids, and compounds of metalloids. Examples: SiO ₂ , Silicon Carbide, C (Diamond), Quartz, Graphite.
Metallic Solids	Atoms	Metallic Bonds	3-D arrays of metal ions surrounded by a uniform sea of delocalized valence electrons.	 Soft to very hard. Malleable (and ductile; easily deformed under stress. Lustrous. Low to very high melting points. (Depends strongly on electron configuration). Typically high density. Excellent thermal and electrical conduction (Good conductors of heat and electricity). 	Metal atoms only, Mixtures of metals from alloys. Examples: Al, Cr, Fe, Mg.
Ionic Solids	Positive and Negative Ions	Electrostatic Attractions	3-D crystal lattice of ions locked in place by relatively strong ionic bonds.	 Hard, but brittle. Shatter under stress. Relatively dense. Dull Surface. High melting point. Poor thermal and electrical conduction (Poor conductors of heat and electricity). Nonconductors (insulators) in pure form, Conductors in water solution. 	Compounds of metal cations and nonmetal anions; typical salts. Examples: NaCl, CaF ₂ , & Al ₂ O ₃ , Mg(NO3) ₂ .
Molecular Solids	Atoms or Molecules	London Dispersion forces Dipole-dipole forces Hydrogen Bond	Individually covalently bonded molecules held together by weak IMF.	 Fairly soft. Low to moderately high melting point. Low density. Dull surface. Poor thermal and electrical conduction. Nonconductors. 	Compounds of nonmetals only. Examples: $P_2O_5, H_2O(s),$ $C_2H_{12}O_6,$ $C_{12}H_{12}O_{11}, CO_2,$ Ar.

Note:

• A *malleable material* is one in which a thin sheet can be easily formed by hammering.

• A *ductile material* is one that can easily be stretched, under tensile stress, into a wire when pulled.